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1. Introduction

Constraint Logic Programming languages span the void between symbohce and numeric
computation. The increased power of expression that these languages present to a pro-
grammer expands the field of applications that logic-based. declarative languages can
represent. This report is an initial effort to introduce the specific language CLP(R) to
the planning and scheduling area of artificial intelligence.

Section 2 of this work is an overview of Constraint Logic Programming, including the
motivation and design goals of CLP(R). Short examples are also given in this section
to illustrate new and useful features of the language. A description of the CLP(R)
architecture is added to complete the system’s basic structure. Finally. this section
presents three application areas of CLP(R): (1) financial analysis, (2) problems from
electrical engineering, and (3) analysis and partial synthesis of truss structures.

Section 3 describes two current planning or scheduling systems. The short summaries
that are presented there are intended to emphasize the basic features or to illustrate those
characteristics of the svstems that are deemed appropriate for CLP(R).

Section 4 discusses two original planning examples that link CILLP(R) with planning
problems. The codes for the two examples are contained in the appendices. Conclu-
sions for this work are found in Section 5.

2. Constraint Logic Programming

"The class of Constraint Logic Programming (CLP) languages has caused much ex-
citement in computer science because of its conglomeration of such diverse areas as
numerical analysis, artificial intelligence, operations research. logic. mathematics. and
formal languages” [Cohen 1990]. The combination of logic programming with con-
straint satisfaction is a natural extension of traditional logic programming languages -
since the fundamental unification process can be viewed as a special case of constraint
satisfaction; i.e., unification of f(X,a) with f(b.Y) is equivalent to solving f(X.a)=f(b.Y).

Constraint Logic Programming (CLP) is a class of logic programming languages that
are modeled on rule-based constraint programming. The specific instant CLP(R) uses
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the real numbers (R) as its structure of computation. In particular, the constramts are
relations over "real arithmetic terms with uninterpreted tunctors” {Jatfar 36, Since all
CLP languages are soundly based on a single framework of formal semantics. there are
no restrictions in CLP(R) to the Herbrand Universe, to umfication. or to allowed
equations.

There are several features of CLP(R) that are note-worthy. The most important features
are briefly described here and illustrated more fully later. The output of CLP(R) pro-
grams is symbolic: thus, it is not only possible to see responses to queries hike X=6 or
Y=Dbill, but one may also have X*X = Y+4.

CLP(R) also expands the use of declarative programming. For example. in using an
equation of the form X = Y + 4, it is no longer necessary to wrnite two different rules,
depending on whether X or Y is instantiated at the time that the equation 15 invoked.
This equation is merely a constraint, and CLP(R) 1s able to deal with all four possible
instantiation cases: neither X nor Y is ground. X is ground, Y is ground, or both X and
Y are ground. From the programmer’s view, it is only required to state the equation.
CLP(R) then makes the appropriate interpretation during execution.

CLP(R) is able to run Prolog programs with no changes. Indeed. one of the design
goals of CLP(R) was not only to execute Prolog programs but to have them run as
efficiently as normal. This required separating the interpreter into an inference engine
and a constraint solver. In running a Prolog program. there should be no need for the
constraint solver. Consequently, the inference engine is essentially a Prolog interpreter.

The second fundamental design goal of CLP(R) dictated that only linear ccnstraints
would be considered by the constraint solver. This limitation was amelirrated by de-
fining a delay and wakeup condition. Basically, non-linear constraints a:¢ delaved until
a sufficient number of the variables are instantiated and to make the constraints linear.

The third design goal required CLP(R) to deal with constraiits incrementally. This
means that in the execution of a query it is not necessary to verify the solvability of an
entire set of constraints when a single new constraint is added. Rather it is necessary
only to verify that the new constraint is compatible with the old set of constraints.

Other design goals of CLP(R) included a choice of appropriate algorithms for testing
the satsficability of systems of constraints, a demand that the system be able to simplify




a system of constraints, and that the constraints be represented internally in a canonical
form. These latter objectives deal with the very practical ssues of constructing an
efficient implementation. They will not be examined further, but their solution will be
lauded.

2.1 Constraints versus Assignments

In this section two examples are given to illustrate the increased power of expression
available to CLP(R). Both examples involve replacement of the assignment statement
("is") in Prolog with a constraint.

Consider the following predicate which defines the addition of the first two argument:
plus(X,Y,Z) :- Z 1s X+Y.
This rule assumes that the variables X and Y have been instantiated at the time the rule
is invoked. If etther X or Y is not ground or if Z s ground at invocation, a run-ume
error occurs. In order to make this rule valid in all possible circumstances,. it is neces-
sary to replace it with the following set of rules:
plus(X.Y,Z) :- not(var(X)), not{var(Y)), not(var(Z)),
S is X+Y, Z=S.
plus(X.Y,Z) :- not(var(X)). not(var(Y)), var(Z). Z is X+Y.
plus(X.Y,Z) :- not(var(X)), var(Y). not(var(Z)). Y is Z-X.
plus(X.Y.Z) :- var(X), not(var(Y)). not{var(Z)), X is Z-Y.

CLP(R) allows this set of rules to be replaced by this more declarative representation:
plus(X,Y,Z) :- Z=X+Y.
Here the intention is much clearer: the variables X. Y, and Z are constricted to obey the

given equation. It is not necessary for the programmer to described separately the four
1astantiation cases.

Moreover, it is equally awkward in traditional Prolog to consider the other four possi-
bilities of variable instantiations: two of the three variables are uninstantiated or all
three variables are uninstantiated. CLP(R) accepts the single equation and internally
considers the separate cases. In CLP(R) the response may be either yes/no (when all
variables are instantiated), an assignment (when two of the three variables are instanti-
ated), or an equation (in other cases).

(V)




The second example compares the definition of the Fibonacci series in Prolog and in
CLP(R).

in Prolog in CLP(R)
fib(0,1). fib(0.1).
fib(1,1). fib(1,1).
fib(N,R) :- fib(N.R1+R2) :-
N1is N-1, N >=2,
fib(N1,R1), fib(N-1.R1),
N2 is N-2, fib(N-2.R2).
fib(N2,R1), Ris R1+R2.

Both of these programs can answer the question ?-fib(10.F) with the answer F=89, but
only the CLP(R) program can answer the question ?-fib(V,89) with N=/0. This ex-
ample illustrates several features of CLP(R). First, the second program is more
declarative: to find the Nth Fibonacci number, add the Fibonacci numbers of the (N-1st
and (N-2)nd Fibonacci numbers if N is larger than one. Secondly, the CLP(RR) defini-
tion allows a reversal of role of the "input” variable and the "output” variable. Although
this is common with many other Prolog predicates (compare, the standard definitions of
member and append), it is not the intention here. Finally, the CLP(R) version allows
arithmetic operations to occur in the arguments of a predicate. This is a radical notion
only for Prolog since most procedural languages have generally provided such facilities
for procedure calls.

2.2 The CLP(R) Interpreter

Arithmetic terms in CLP(R) are constructed from real constants.variables. and these
interpreted functors: +, -, * /, sin, cos, tan, pow (the power function), min. and max.
The CLP(R) interpreter is composed of five parts: (1) the inference engine. (2) the in-
terface between the inference engine and the constraint solver, (3) the equation solver.
(4) the inequality solver, and (5) the output module.

The constraint solver itself is composed of the equation and the inequality solvers. The
inference engine is basically a Prolog interpreter, which controls the execution of the
derivation steps and updates variable bindings. The usual stack mechanisms and svm-
bol tables are maintained here. The interface module’s primary purpose is to smooth




the transition between the inference engine and the pieces of the constraint solver. The
interface evaluates complex arithmetic expressions and transforms constraints nto
standard forms.

Constraints that are received by the constraint solver occur in one of three forms: linear
equations, linear inequalities, or non-linear equations. Linear equations are sent to the
equation solver while linear inequalities are sent to the inequality solver. Non-linear
equations are delayed until so many of its variables are ground that the equations be-
come linear. The output module finally converts the internal representations of
constraints to a canonical output form.

"The central data structure in the equality solver is a tableau which stores, in each row.
a representation of scme variables in the form of a linear combination of parametric
variables” [Jaffar 1988].

As progress is made with the linear constraints, the involved variables become ground.
It is then possible to check if these variables are involved in any of the delayed non-
linear constraints. After making appropriate adjustments to the non-linear constraints.
a queue is formed of all non-linear constraints that have become linear. These linear
constraints are then passed to either the equation solver or the inequality solver before
proceeding with the next derivation step of the proof. Chaining effects in which one
linearized constraint causes another non-linear constraint to become linear are nossible.

A simple bookkeeping device is used to determine when backtracking in the constraint
solver is necessary. In general, backtracking in the constraint solver always corre-
sponds to a backtracking point in the inference engine but not vice versa.

Linear equations are stored in parametric form. Thus, a constraint like X = Y. which
involves program variables X and Y may be represented as these two parametric equa-
tions: X =tand Y =t. In general, any variable will be converted to this parametric form:
X=b+citi+ Catag + ... + Cylx.

Linear inequalities are solved by the Two-Phase Simplex algorithm. Details of this
algorithm are given in [Jaffar 1986].




2.3 Applications of CLP(%R)

CLP(R) has been used for an ever increasing number of applications. These three ex-
amples are cited to display the diversity: (1) options trading on the stock market. (2}
electrical engineering circuit analysis, and (3) truss analysis and partial synthesis ot
structures in civil engineering.

2.3.1 CLP(X) in Financial Analysis

Options are used to express confidence levels in the intrinsic value of an asset. For
example, one may make a call option to buy a stock before some specific date. Should
the stock drop very low before the specified date, the owner of the call option would
typically purchase the stock at its low point. In the worst case, the stock increases
monotonically, and the owner must buy the stock when the specified date arrives.

Two features of options trading have been cited [Lassez 1987] that make 1t an appro-
priate application of combining symbolic and numeric computation. They are that
traders typically combine (1) their personal, expert heuristics with (2) numeric valua-
tion functions ia decision-making.

The indifference of rules in CLP(R) to dictating which variables are input and which
variables are output is an attractive characteristic to option trading since it 1s not nec-
essary to write additional rules for reversing the direction of computation. Furthermore.

in CLP(R) it is possible to unite symbolic output and constraints on goals to obtain
"what if" analyses.

An interesting feature of option trading is that pavoffs for option combinations can be
represented by piecewise linear functions. These functions can be expressed in term of
two elementary functions: (1) the Heaviside function, and (2) the ramp function. as
shown in [Lassez 1986]. The Heaviside function, h(X,Y)., is zeroif Y < X and one if Y
>= X. The ramp function, r(X,Y),iszeroif Y < X, and Y-X if Y >= X.

2.3.2 CLP(R) in Electrical Engineering

A second area of applications using CLP(R) has been with some electrical engineering
problems [Heintze 1986]. Three categories of these problems are lumped circuits. dig-




ital filtering networks, and electromagnetic hields.

Circuit problems include both analysis and synthesis of analogue circuits, in which the
constraints are either local (e.g.. Ohm'’s law for a resistor) or global (e.g., Kirchoff's law
in nodal analysis). Specific examples of these problems are analysis of stecady-state
RLC circuits and diode components in RLC circuits. Bipolar junction transistors for
amplifier and logic circuits have also been analyzed and designed.

In the area of digital signal flow, the simulation of linear shift-invariant digital system
with the independent variable time have been successfully modeled in terms of linear
signal-flow graphs. In these graphs signal values at the nodes at successive time steps
are simulated by summing constraints for each node and by collecting branch equations.
In CLP(R) one needs only to declaratively state the equations while the interpreter de-
cides the particular method for solving the equations.

The final category of electrical engineering problems involves numerical, approximate
solutions for the pertinent partial differential equations of electromagnetic fields. A
finite difference approximation is the common approach for these problems. The ex-
amples of this category illustrate the elegance of CLP(R) in using finite difference
methods by its concise representations and its use of the constraint collection
mechanism.

2.3.3 CLP(R) in Truss Structures

Analysis and synthesis problems are common to all areas of engineering. Recently
[Lakmazaheri 1989] has shown that constraint logic programming is suitable for the
analysis and partial synthesis of truss structures. Typically these two problems of anal-
ysis and synthesis are considered antithetical in engineering; however, a CLP(R)
representation is able to use only one representation for the two. The particular query
dictates the appropriate form.

This work on truss structures has shown that the technique of local propagation is in-
adequate for satisfying simultaneous constraints when the associated constraint graph
contains cycles. But in the constraint-based approach the constraints can be viewed as

relations rather than functions: hence, there is no explicit commmitment to a specific
variable being either input or output.
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The constraints associated with structural components are classified by these catego-
ries: (1) truss components, which satisty a two or three dimensional form of the vector
equation KD=F with K an n by n (n=2 or 3) stiffness matrix, D the n by 1 displacement
vector at the two end nodes and F the n by 1 force vector at the two end nodes: (2)
support components of the type pin support, rollerX support. or rollerY support: and (3)
load components, each of which is associated with a force vector and a displacement
VECLOr.

The position and displacement vectors are functions, and the nodes” force histories are
hists. Nodes in two dimenstons are terms of this form:

n(p(Px,Py), d(Dx,Dy), H)
where Px and Py are the x and y coordinates of the position vector, Dx and Dy are the
x and y coordinates of the displacement vector, and H is the node force history list.

One can then describe general rules for the local nodal behaviors. This is analogous to
Ohm’s law in electrical circuits. For example, this rule

A valid node exists if its coordinates are valid.
is represented by this CLP(R) rule

node(n(p(Px,Py),_,_)) :- ordinate(Px), ordinate(Py).

Since the behavior of a structural model is derived from the behavior of its structural
components, rules can be added that insure the satisficability of the constraints associ-
ated with the structural components.

Four examples are presented in [LLakmazaheri 1989]. The first example illustrates the
capability of the constraint logic program to perform numerical analysis of a statically
indeterminate truss structure. The second example shows the capability of the program
to perform symbolic computation for structural analysis. The third example gives a
partial synthesis of a simple truss structure using the same program. Finally. the last
example demonstrates the applicability of the program for solving more complex
problems.

The main contribution of this work is the development of a general and declarative
constraint-based formulation for the analysis and partial synthesis of truss structures
using the framework of constraint logic programming methodology. A single and uni-
form framework for modeling engineering design problems facilitates the integration of




different design activities such as synthesis. analysis, and evaluation.

Currently [Lakmazaheri 1992} is examining two strategies to improve the processing
time of constraint-based engineering problems by using distributed processing through
problem decomposition. The set of connectivity constraints then ensures displacement
compatibility and force equilibrium on the connections between each pair of
substructures. A study of 5000 elements has shown a speed-up factor of 6 is achieved
when the structure is decomposed into sixteen substructures.

3. Planning

Constraints are a familiar part of planning and scheduling problems. The choices tha:
are made in such a design involve relations (constraints) among objects of the domain
of discourse. The use of constraints in artificial intelligence was proposed in [Steele
1980] and {Sussman 1980].

This section describes briefly two current planning or scheduling systems. The short
summaries that are presented here are intended to emphasize the basic features or to
illustrate those characteristics of thie systems that are deemed appropriate for CLP(R).

3.1 OPIS

The difficulties in factory scheduling, as defined in [Smith 1990] are caused by the
complexity of assigning shared resources to competing processes and by the unpre-
dictability of maintaining a stable schedule of good quality within acceptable time
limits. OPportunistic Intelligent Scheduling (OPIS) is an incremental scheduler that
attacks these difficulties through the blackboard paradigm. OPIS uses characteristics of
the current solution constraints to focus the attention of the top-level manager of the
knowledge sources (KSs). On each control cycle OPIS combines constraint propagation
with consistency maintenance.

OPIS uses dynamic decomporition to manage the complexity problem. This requires
heuristic guidance about the decomposition and where to direct the search effort. Two
decomposition types used in OPIS are resource-based and order-based. As implied by
the naming, a resource-based decomposition emphasizes a specific resource and stress-




es opumal resolution of conftlicts over that resource. In contrast, order-based decom-
position emphasizes a particular customer’s order and 1s directed by the opumal
resolution of conflicts to produce that order.

The architecture of OPIS is suitable for all forms of scheduling. In this tramework
knowledge sources are either analysis or scheduling knowledge sources. Schedule KSs
post updates for adjusting the incrementally maintained representation of the current,
incomplete schedule. Updates are one of these three kinds: (1) incomplete hypotheses
(processes that have vet to be scheduler), (2) elementary contflicts, and (3) opportunttics
available due to loosening of the constraints.

Analysis KSs are used within the top-level control cycle. which consists of event se-
lection, event analysis, action section, and action execution. Event selections are based
on aggregating primitive events and establishing prioritics. Event analysis examines
capacity and conflict constraints. Capacity constraints are used to estimate antcipated
contention by identifying possible bottlenecks. Conflict constraints are measured by
duration of the conflict, the number of order involved, projected lateness. etc.

The two primary schedulers of OPIS are the order scheduler and the resource scheduler.
The order scheduler uses beam search on resource assignment. The resource scheduler
is an iterative dispatch-based methodology. Other schedulers that have been tried sim-
ply push scheduled execution times forward (the right shift scheduler) or exchange the
remaining part of an incomplete plan with another order’s schedule in order to optimize
the two plans (demand swap).

3.2 Deadline-Coupled Real-Time Planning

Real-timc planning is an important class of planning problems that contain a mixture of
symbolic and numeric computations. In real-time planning it is necessary to spend time
not only planning and acting but also reasoning about the time remaining before reach-
ing a deadline. This latter reasoning is traditionally done through meta-reasoning, and
its timing requirements are frequently ignored. In [Kraus 1990} an accounting is made
for all planning and acting times. This is done using step-logics. in which the funda-
mental unit (a step) represents the time taken to draw a single infercace. At the ith step.
the inference engine uses observations of the external environment as input. together
with all non-contradictory deductions drawn in the previous i-1 steps.
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Until a plan is fully developed, the reasoner works on the current partual plan, which
consists of an ordered list of triples, each of which is (1) a set of associated precondi-
tions, (2) an action, and (3) a set of following results. This representation 1s able 1o
distinguish between actual facts and the facts within the context of the parmal plan: 1.¢..
the difference between a robot being actually located at position P and the planming
precondition that the robot is located there.

This approach also allows execution of the partially developed plan to begin before a
complete plan has been constructed. While the action occurs, planning may contnue.
During acting and planning, the system maintains a Working Estimate of Time (WET)
remaining before the deadline. Furthermore, each action has a timing interval associ-
ated with it. During this interval, the predicate (action) is asserted to be true.

4. Planning Examples in CLP(%R)

4.1 Departmental Scheduling of Courses

The first scheduling example is a program for constructing a department’s schedule of
course offerings for the next term. The program is somewhat restricted, but does con-
tain many of the features needed to assess the potential of CLP(R) as an adequate
representation of scheduling problems.

The entire program is divided into three parts: (1) the rules of inference. (2) constraints
that must be met, and (3) instructors’ preferences, which will be satisfied if possible.
The inference rules initially constiuct a schedule that meets all constraints and then
attempts to accommodate each of the preferences.

It is assumed that there is only one section for cach of eighteen courses and that a par-
ticular instructor has already been assigned to each course. These facts are given in this
form: course(560,jelks). The department controls only three classrooms (rooml.
room2, room3). All classes begin on the hour and last fifty minutes The earliest class
begins at 8 a.m., and the latest class begins at 2 p.m. Thus, there are twenty-onz
time/room combinations available for the eighteen courses. No allowance is made for
Monday-Wednesday-Friday or any other form of scheduling. One can assume that each
class needs its room every day.

11




Two types of constraints are made on the schedule. First. no mstructor can teach two
courses at the same hour. Secondly, certain pairs of courses cannot be scheduled at the
same hour since such an alignment will prevent departmental majors from takug both
classes. The second type of constraint is represented by facts hike this:
time_clash(400,520).

The initial scheduling recursively invokes the predicate “schedule/3", which selects the
next_candidate. This is an order scheduler in which the order 1s dictated by the hour.
with a numerical sub-ordering of the three rooms. This scheduler can be modified 1o &
resource scheduler. For example, one can impose a priority measure based on the
course number or on the particular instructor. An alternative is to construct the con-
straint graph of the "time_clash" predicate and let the resource scheduler select the most
heavily constrained course/instructor first. In the program of Appendix A, the
course/instructor selected for the current candidate time/room by the order scheduler s
based on a top-to-bottom scan of the "course™ facts.

For a large scale system, it may be more appropriate 1o use a priority queue of "course”
facts. Standard backtracking methods are available for constructing alternative
schedules. In the Appendix A example. a time/room is left vacant if no compatible
course/instructor is available. These unscheduled exceptions are reported to the user
when the Initial Schedule is presented.

After the initial schedule is completed, adjustments are attempted for each instructor’s
preferences that are not satisfied in the Initial Schedule. These preferences may take
many forms. An instructor may wish to avoid certain hours: e.g.. no class after noon.
She may wish to avoid a particular room assignment. He may wish to avoid teaching
back-to-back classes. For illustration, the Appendix A program uses only preferences
for avoiding particular class hours.

Many priority orders of the preferences are available; viz., by seniority. by multiplicity.
by pr ofessorlal rank, etc. Each unachieved preference is tried only once in the foiiow-
ing fashion. If (1) there is an available time/room in the current schedule. (2) no
constraints will become invalid , and (3) no other achieved preference is negated. then
the course/instructor is moved to the new time/room, and the old time/room becomes
free. If any one of these conditions is not met, the unfulfilled preference in noted (in the
output), but it is not reconsidered.




4.2 Where Is the Zebra?

The second example was originally available on network services and solved by Daniel
Ligett. As stated. one is given five house in a line. Each house has one of five colors
(green, red, blue, yellow, ivory), shelters one of five nationalities (English, Spamsh.
Ukrainian, Japanese, Norwegian), has one of five pets (dog, horse, zebra. fox, snails).
stocks one of five liquids (water, tea, coffee, orange juice, milk), and breathes one of
five cigarettes (Kools, Chesterfields, Parliaments, Winstons, Lucky Strikes).

With no constraint, there are 5x5x5x5x5 different combinations that can occupy the
first house, 4x4x4x4x4 combinations for the second house, 3x3x3x3x3 combinations
for the third house, 2x2x2x2x2 combinations for the fourth house, and one remaining
combination for the fifth house. Thus. there are 3125x1024x243x32 (about 24 billion)
total possible combinations.

Fourteen constraints are given to limit the search space in locating the house of the
zebra. All the restrictions are shown in the complete program which is given in Ap-
pendix B. Eight of the constraints pair two of the five attributes: e.g.. the Japanese
smokes Parliaments. Three of the constraints use the "next_to" predicate: e.g.. the
house with chesterfields is next to the house of the fox. One restricuon is even more
specific, using the predicate "is_to_the_right_of™ rather than "next_to.” One constraint
describes the first house (counting from left to right), and one describes the middle
house.

With the fourteen constraints, one finds only one solution: the zebra resides in the fifth
house. If the constraint that links the Japanese with Parliaments is dropped. one finds
nine solutions, and the zebra can be found in any of the houses except the second house.
If the constraint that connects snails and Winstons is also dropped. one finds sixty-four
solutions. If the constraint between the green house and coffee is dropped. one has 344
solutions. The case of one solution and the case of nine solutions are given in Appendix

49

In general, one cannot expect always to find ten solutions by dropping one of the four-
teen constraints. For example, if the only missing restraint is the one that requires the
house of the Chesterfields to be next to the house with the fox. then one find just two
solutions, and the zebra is found in either the first or the fifth house.
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The original solution has been modified by adding the predicate "member restricuons’
in order to guarantee no duplicatons of any of the five attributes. This i1s imphied 1n the
statement of the problem but did not actually happen except in the case of the unque
solution.

A variation of the modified program also appears in Appendix B. In this second form
the five values of each of the five attributes is coded numerically. For example, red=1.
blue=2, green=3, yellow=4, ivory=35 for the color attribute. Also the uniqueness con-
straints, which are invoked with the "member_restrictions” predicate are replaced by
two predicates which use numeric constraints. The firsi predicate.
“"member_restrictions,” checks that each value assumed by each of the five atributes
lies in the closed interval from one to five. The second predicate, "column_restrictions.”
checks that no value is duplicated. If each numeric value i1s assumed only once, then
their sum of all five houses for each attribute must be fifteen.

5. Conclusions

In this report a discussion of constraint logic programming has been presented. This
included (1) features of the CLP(R) language that extend logic programming to linear
equations and inequalities over the reals, (2) the architecture of CLP(R). and (3) apphi-
cation of CLP(R) to financial analysis, electrical engineering, and truss structures. Two
planning/ scheduling systems were also examined to show that such systems could
contain features that would be appropriately represented with CLP(X). Finally, two
small examples were constructed, a departmental course scheduler and a reformulation
of "where’s the zebra” problem. The scheduler illustrates CLP(R)'s expressive power
in planning/scheduling problems and in general problem-solving which involves sym-
bolic constraints. The "zebra" puzzle shows the versatility of CLP(R) with representing
symbolic and numeric constraints.

Future work in this area will be directed to examining how the OPIS schedulers and the
deadline-directed real-time scheduler can be expressed in CLP(R). Hopefully, these

examinations will provide an impetus for using CLP(R) in other areas of planning and
scheduling.
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APPENDIX A




/*****************************************************x**************/

/* Scheduling 18 courses (with instructors) into three classrooms, */
/* between 8 a.m. and 2 p.m. */
/* Facts are in files: prog/c_and_f2.clpr, prog/pref2.clpr */

/*******************************************************************/

/********************************************************************/

o RULES-------=---- */
/* These rules */
/* go,schedule present,time_room, constraints_valid, */
/* double, overload, and course_clash */
/* are used to construct the initial schedule, which honors departmental */
/* requirements that certain pairs of courses cannot be taught at the */
/* same hour since this would prevent majors from taking more than one */
/* of the courses. */

/********************************************************************/

go :- schedule ( [], 7, room3).

schedule( L, Told, Rold) :-
next_candidate(Told,Rold, Tnew Rnew,L.Lnew),
schedule( Lnew, Tnew, Rnew).
schedule( L, Told, Rold) :-
reverse(L,Lrev),
exhibit(Lrev).

next_candidate(Told,Rold,Tnew, Rnew,L,Loew) :-
time_room(Told, Rold, Tnew, Rnew),
course (N, P),
constraints_valid( [N,P,Tnew ,Rnew], L),
append( [ [N.P,Tnew,Rnew] ], L, Lnew).

next_candidate(Told,Rold, Tnew Rnew,L.L) :-
time_room(Told, Roid, Tnew, Rnew).

18




exhibit(L) :-
tell(’prog/schedule.txt’),nl.nl,
Write(,************************************‘),
write('Initial Schedule for CSE Classes’). nl,
present(L),
adjust_pref(L, Ladj),
nl,nl,write("With the exceptions listed above, ),
write("all preferences have been met.’),nl,nl,nl,
Wit (" ¥ ¥k khkskkohokk ook koo ok okok bk ook sk k)
write(’ Adjusted Schedule for CSE Classes’),nl,
present(Ladj).

time_room(14, room3, Tnew, Rnew) :-
fail.
time_room(Told, room3, Tnew, room1) :-
not(Told = 14), Tnew = Told +1.
time_room(Told, room1, Told, room?2).
time_room(Told, room?2, Told, room3).

constraints_valid( [N,P,T,R],L ) :-
not{ member( [N,P,_, 1,L)),
not( double( [N,P,T.R],L)),
not( overload( [N,P,T,R], L)).

double( [N,P,T,R], [ [N1,P1,T1,R1} I Tail ] ) :- T=T1, P=P1.
double( [N,P,T,R], [ H|Tail ] ) :- double( [N.P,T,R], Tail ).

overload( {N,P,T,R], [ (N1,P1,T1,R1]} Tail} ) :-

T =TI, course_clash(N N1).
overload( [N,P,T,R], { H|Taill ) :- overload( [N,P,T,R], Tail).
overload( [N,P,T,R], (] ) :- fail.

course_clash(A,B) :- time_clash(A,B).
course_clash(A,B) :- time_clash(B,A).
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present( [ [N,P,T,R]1Tail]) :-
write(N), write(" '),
write(T), write(" ),
write(R), write(" ),
write(P), nl,
present(Tail).

/********************************************************************/

/* Rules for Adjusting the Initial Schedule to */
/* account for Instructors’ Time Preferences */
r* TVL is the list of Time Violated preferences */

/********************************************************************/

adjust_pref(L,Ladj) :- times_violate(L,[],TVL),
adjust_times(L,Ladj, TVL).

times_violate(Lall,Lin,Lout) :-
time_noz(P,T),
not(member( [_,P,T,_], Lin)),
member( [_,P.T,_], Lall),
append( [ {_,P.T,_] 1, Lin, Lapp),
times_violate(lall,Lapp,Lout).
times_violate(Lall,Lin,Lout) :-
reverse(Lin,Lout).

adjust_times(L,Ladj,TVL) :-
car(TVL,[_,P,T. 1),
member( [N,P,T,R], L),
reschedule( [N,P.,T,R], L, Lnew),
cdr(TVLY), TVLnew =Y,
adjust_times(Lnew,Ladj,TVLnew).
adjust_times(L,L,[]).




reschedule( [N,P,T,R], L, Lnew) :-
find_open_times(L,Lavail),
member([_,_,Topen,Ropen], Lavail),
remove( [N,P,T,R},L, Lrem),
check_new_place(N,P,T,R, Topen.Ropen,Lrem,Lnew).

find_open_times(L,Lavail) :-
all_times([],7,room3,Las),
setdiff(Las,L,Lavail).

all_times(L,Told,Rold,Las) :-
time_room(Told,Rold, Tnew ,Rnew),
append( [ [_,_,Tnew,Rnew] ],L,Lnew),
all_times(Lnew,Tnew,Rnew,Las).
all_times(L.,Told,Rold,Lrev) :-
reverse(L,Lrev).

check_new_place(N,P,T,R,Topen,Ropen,L,Lnew) :-
constraints_valid( [N,P,Topen,Ropen], L),
not(new_conflict( [N,P,Topen,Ropen])),
append( [ [N.P,Topen,Ropen] ],.L.Lnew), L.
check_new_place(N,P,T,R, Topen,Ropen,L,Lnew) :-
nl,write(">>>>> ),
write("Unable to accommodate the preference of '),
write(P),write(’ for no class at "),write(T),
write(’.”).nl,
append( { [N,P,T,R] ].L.Lnew).

new_conflict( [N,P,T,R}) :-
time_noz(Pno,Tno), P=Pno, T=Tno.
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/****************************‘********:&*****************:&m*:{e**:x:g*:g;kxx*{/

/* STANDARD USEFUL RULES !

JARR AR s o e stk etk s o ok R KR K ok ok ok KR SRS s e o ok ok ke ke o o ok o 8 KR s K 3R S o o oK K o

car([[N,P,T R]iTail],[N,P,T,R]).
cdr([[N,P, T ,R]iTail}, Tail).

append({],L.L).
append( [XIY], L2, [XIL3]) :-
append(Y,L2,L.3).
reverse([1,[D.
reverse([HIT],L) :- reverse(T, Trev), append(Trev,[H],L).

member( [N,P,T,R], [ [N,P,T,R]| _]).
member( [N,P,T,R],[H! Trail ] ) :-
member( [N,P,T,R}], Trail).

remove( [N,P,T.R], [ [N,P,T,R] | Tail ], Tail) :- !.
remove( [N,P,T,R], [ HI Tail], [H!Ldel]) :-
remove( [N,P,T,R], Tail, Ldel).

setdiff({],B,[]).
setdiff({ [, ,T.,R]11A2],B,C) :-

member( {_,_,T,R],B), setdiff(A2 B ,C).
Setdlff([ [_’_.,TvR]IAZLB9[ [_9__9T7R] lCz]) -

not(member([_,_,T,R].B)), setdiff(A2,B,C2).




/* These are the course numbers and the assigned instructor.

course(350,deng).
course(324 kabuki).
course(360,elalemain).
course(400,faisal).
course(520,han).
course(624,baker).
course(660,kabuki).
course(200,amin).
course(220,baker).
course(4035,govel).
course(505,govel).
course(524,han).
course(530,ijssel).
course(533,amin).
course(560,jelks).
course(561,jelks).
course(618,deng).
course(630,faisal).

/* These are the restrictions on scheduling caurses at the same hour.
/* Ultimately in the rules each combination is forbidden.

time_clash(200,350).
time_clash(220,350).
time_clash(324,350).
time_clash(324,360).
time_clash(350,400).
time_clash(400,520).
time_clash(405,530).
time_clash(505,533).
time_clash(520,560).
time_clash(524,561).
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time_clash(618.624).
time_clash(624,660).
time_clash(630,660).

/* These are instructors’ preferences, constraints which can be relaxed.
/* time_noz(A.B) means instructor A teaches at B o’clock.

/* room_noz(A,B) means instructor teaches in room B.

/* adj_noz(A) means instructor has adjacent or back-to-back classes.
/* Ultimately the rules will deny all three of these preferences.

time_noz(amin,8).
time_noz(amin,l4).
time_noz(kobuki,12).
time_noz(faisal,10).
time_noz(govel,10).
time_noz(govel,11).
time_noz(govel,12).
time_noz(ijssel.8).
time_noz(jelks,8).
time_noz(jelks,9).

room_noz(deng,r3).
room_noz(ijssel,ri).

adj_noz(baker).
adj_noz(deng).
adj_noz(elalemain).
adj_noz(han).
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THE ORIGINAL VERSION OF "WHERE’S THE ZEBRA"

/* Each house is represented by a structure of the form:

house(Colour, Nationality, Pet, Drink, Cigarette)

Puzzle is currently missing

next_to(house(_,_,_,_,chesterfields), house(_,_,fox._. ), Houses) */
puzzle :-

houses(Houses),

member(house(red, english, _, _, _), Houses),

member(house(_, spanish, dog, _, _), Houses),
member(house(_, ukranian, _, tea, _), Houses),
member(house(_,_,snails,_,winstons), Houses),
member(house(green,_,_,coffee, ), Houses),
member(house(_,japanese,_,_,parliaments), Houses),

right_of(house(green,_._,_,_), house(ivory,_,_,_, ), Houses),
member(house(yellow, _, _, _, kools), Houses),

Houses = [ , . house(_, _, _, milk, ), _,_1,

Houses = [house(_, norwegian, _, _, Jl_],
next_to(house(_,_,_,_.,kools), house(_,_,horse,_,_), Houses),
member(house(_, _, _, orange_juice, lucky_strikes), Houses),
next_to(house(_,norwegian,_,_,_), house(blue,_,_,_._), Houses),

member_restrictions(Houses),

print_houses(Houses),
nl,nl,write(’**************************************** ’),nl.faﬂ.

houses([
house(_, _, _, _, ),
house(_, _, _, _, _),
house(_, _, _, _, _),
house(_, _, _, _, _),
house(_, _, _, _,_)
D.
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member_restrictions(Houses) :-

member(house(green,_,_,_, ), Houses),
member(house(red,_,_, , ), Houses),
member(house(blue, , , , ), Houses),
member(house(yellow,_,_, , ), Houses),
member(house(ivory,_,_,_, ), Houses),
member(house(_,english,_,_,_), Houses),

member(house(_,spanish,_,_,_), Houses),
member(house(_,ukranian,_, , ), Houses),
member(house(_,japanese,_,_,_), Houses),
member(house(_,norwegian,_,_,_), Houses),
member(house(_,_,horse, , ), Houses),
member(house(_,_,dog,_,_), Houses),
member(house(_,_,zebra,_, ), Houses),
member(house(_,_,fox, , ), Houses),
member(house(_,_,snails,_, ), Houses),
member(house(_,_,_,orange_juice,_), Houses),
member(house(_, , ,milk, ), Houses),

member(house(_,_,_ ,coffee,_), Houses),
member(house(_,_,_,tea, ), Houses),
member(house(_,_,_,water, ), Houses),
member(house(_,_, ., kools), Houses),
member(house(_,_,_,_,chesterfields), Houses).
member(house(_,_,_, ,lucky_strikes), Houses),
member(house(_,_,_,_,parliaments), Houses),
member(house(_,_, ,_,winstons), Houses).

right of(A, B, (B, Al_]).
right_of(A, B, [X i Y]) :- right_of(A, B, Y).

next_to(A, B, [A,B1_].

next_to(A, B, [B, Al _].
next_to(A, B, [X 1 Y]) :- next_to(A, B, Y).
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member(X, [XIY]).
member(X, [AIB]) :- member(X, B).

print_houses([AIB]) :- tell(’prog/zout.txt’),
print(A),nl,
print_houses(B).

print_houses({]).

The Output When All 14 Restriciton Are Included

house(yellow, norwegian, fox, water, kools)
house(blue, ukranian, horse, tea, chesterfields)
house(red, english, snails, milk, winstons)
house(ivory, spanish, dog, orange_juice, lucky_strikes)
house(green, japanese, zebra, coffee, parliaments)

ke ofe 3 o e sle e sk 2k sl ok 2l e ok ke e ok o ke ke dfe e ok e e sk sk e sk SR Sk R SR sk sk sk ok sk ok
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The Output When Only 13 Restriciton Are Included
Missing: house(_,japanese,_, ,parliaments)

house(yellow, norwegian, fox, water, kools)
house(blue, ukranian, horse, tea, chesterfields)
house(red, english snails, milk, winstons)
house(ivory, spanish, dog, orange_juice, lucky_strikes)
house(green, japanese, zebra, coffee, parliaments)

3k 3 3§ e e sk ok vk 3K ok 3k o dfe 3k i s 3k sk sk o 2k e sk ke ol Sk K R sk ok ok skoofe sk ek ke ok ke ok

house(yellow, norwegian, fox, water, kools)
house(blue, ukranian, horse, tea, chesterfields)
house(red, english, zebra, milk, parliaments)
house(ivory, spanish, dog, orange_juice, lucky_strikes)
house(green, japanese, snails, coffee, winstons)

S e e e 2 ok e K 3 3 e s e 2k A 2k S e sk e vk o vk sk sk ok sk 3k ok f S e sk sk sk A o ok kok

house(yellow, norwegian, zebra, water, kools)
house(blue, ukranian, horse, tea, chesterfields)
house(red, english, fox, milk, parliaments)
house(ivory, spanish, dog, orange_juice, lucky_strikes)
house(green, japanese, snails, coffee, winstons)

e ok o e sk ofe 3k sk 3k ok 3K e e 3 3¢ o o e Sk sk 3K sk o e ok sk sk ¢ sk ok otk sk sk sk ke kol ko

house(yellow, norwegian, fox, water, kools)

house(blue, ukranian, horse, tea, chesterfields)

house(red, english, snails, milk, winstons)

house(ivory, japanese, zebra, orange_juice. lucky_strikes)
house(green, spanish, dog, coffee, parliaments)

e e e 3k e o 3k 3o 2 S sk e e o e ok 3k ke e e o ofe Sk e ofe ok ok sk sk ke sk ok ok o sk sk sk sk ke ok

house(yellow, norwegian, zebra, water, kools)
house(blue, ukranian, horse, tea, parliaments)
house(red, english, snails, milk, winstons)
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house(ivory, japanese, fox. orange juice, lucky_strikes)
house(green, spanish, dog, coffee, chesterfields)

e 3 e e A 3 s S e ¥ e e e 3K o e ok K K ok e ok K oK 3k S ok sk 2k K Sk s K K Kk ok ok ok ok

house(yellow, norwegian, zebra, water, kools)
house(blue, japanese, horse, orange_juice, lucky_strikes)
house(red, english, snails, milk, winstons)

house(ivory, ukranian, fox, tea, parliaments)
house(green, spanish, dog, coffee, chesterfields)

e ofe s s o Sk ok ok sk e e e s e vk e sk vk 3K 3 sk o ok sk ok sk e ok ok e Sk ok vk ok ok ok Kok Rk

house(yellow, norwegian, fox, water, kools)
house(blue, ukranian, horse, tea, chesterfields)
house(ivory, spanish, dog, milk, parliaments)
house(green, japanese, snails, coffee, winstons)
house(red, english, zebra, orange_juice, lucky_strikes)

S s s o sk ok o e e e 3 o 3k ok sk sk ke e sk e sk ok ke oK o e e e o ok ke ok ok sk ok ok ok ok sk ok

house(yellow, norwegian, fox, water, kools)
house(blue, ukranian, horse, tea, chesterfields)
house(ivory, japanese, snatils, milk, winstons)
house(green, spanish, dog, coffee, parliaments)
house(red, english, zebra, orange_juice, lucky_strikes)

ke o ok e 3 Sk s S s o st ke e sk sk sk sk sk ok ke sk ok ok ok ke ke ok ok o ok ok ok ok ok ok ok ke ok ok ok

house(yellow, norwegian, zebra, water, kools)
house(blue, ukranian, horse, tea, parliaments)
house(ivory, japanese, snails, milk, winstons)
house(green, spanish, dog, coffee, chesterfields)

house(red, english, fox, orange_juice, lucky_strikes)
e e ofe 2k 3 k3 s K e e ok 3 3 Sk ok sl e e e sk ke 36 ofe ke ke ok Sk sk ofe sk ok ke ok sk e ke ke
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THE NUMERICAL VERSION OF "WHERE’S THE ZEBRA"

/* [Each house is represented symbolically by a structure of the form: *f
/* house(Color, Nationality, Pet, Drink, Cigaretre) */
/* TRANSLATIONS
COLORS NATIONALITIES PETS DRINKS SMOKES
1=red 1=english l=dog l=water 1=kools
2=blue 2=spanish 2=horse =tea 2=chesterfields
=green 3=ykranian 3=zebra 3=coffee =~ 3=parliaments
4=yellow 4=japanese 4=fox 4=orange_j 4=winstons
S=ivory S=norwegian S=snails  S=milk S=lucky_ strike
*/

/*Missing constraint of japanese and parliaments: member(house(_,4,_,_.3),Houses)*/

puzzle :-

houses(Houses),

member(house(1, 1, _, _, _), Houses),
member(house(_, 2, 1, _, ), Houses),
member(house(_, 3, _, 2, ), Houses),
member(house(_,_,5,_,4), Houses),

member(house(3,_,_,3, ), Houses),
right_of(house(3,_,_,_,_), house(5,_,_,_,_), Houses),
member(house(4, _, , , 1), Houses),

Houses = [_, _, house(_, _, _, 5, ), _._].

Houses = (house(_, 5, _, _, )I_1,
next_tochouse(_,_,_, ,2), house(_,_,4, , ), Houses),

next_to(house(_,_,_, ,1), house(_,_,2, , ), Houses),
member(house(_, _, _, 4,5), Houses),
next_tothouse(_,5,_,_, ), house(2,_, , , ), Houses),
member_restrictions(Houses),
column_restrictions(Houses),
print_houses(Houses),
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nLanrite(’****************************************')‘nl.fa”‘

houses({
house(_, _, _, _, ).
house(_, _. . _, _)
house(_, _, _, _,_)
house(_, _, _, _, ).
house(_, _, _, _,_)
D.

member_restrictions(Houses) :-
member(house(CN,P.D.S), Houses),
1<=C,C<=5,
1<=N,N<=35,
1<=P,P<=35,
1 <=D, D <=5,
1<=38§, S <=5, fail.
member_restriction(Houses).

column_restrictions(Houses) :-

Houses =[ house(C1,N1,P1,D1,S1),
house(C2,N2,P2,D2.52),
nouse(C3,N3,P3.D3,S3),
house(C4,N4,P4,D4.S4),
house(C5,N5,P5,D5,S5) ],

C1+C2+C3+C4+(C5=15,

NI1+N2+N3+N4+N5=15,

P1+P2+P3+P4+P5=15,

D1+D2+D3+D4+D5=15,

S1+82+83+54+S5=15.

right_of(A, B, [B, Al _].
right_of(A, B, [X 1Y ] :-right_of(A, B, Y).

next_to(A, B, [A,B 1 _]).




next_to(A, B, [B, Al ).
next(to(A, B, [X 1Y]) :- next_to(A, B, Y).

member(X, [XIY]).
member(X, [AIB]) :- member(X, B).

print_houses([AIB]) :-
tell(’prog/zout.txt’),
print(A), nl,
print_houses(B).
print_houses([]).

2US GOVERNMENT PRINTING OFFICE
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OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and te nology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of c3 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.




